Indirect radio-chemo-beta therapy: a targeted approach to increase biological efficiency of x-rays based on energy.
نویسندگان
چکیده
Despite the use of multimodal treatments incorporating surgery, chemotherapy and radiotherapy, local control of gliomas remains a major challenge. The potential of a new treatment approach called indirect radio-chemo-beta therapy using the synergy created by combining methotrexate (MTX) with bromodeoxyuridine (BrUdR) under optimum energy x-ray irradiation is assessed. 9L rat gliosarcoma cells pre-treated with 0.01 μM MTX and/or 10 μM BrUdR were irradiated in vitro with 50 kVp, 125 kVp, 250 kVp, 6 MV and 10 MV x-rays. The cytotoxicity was assessed using clonogenic survival as the radiobiological endpoint. The photon energy with maximum effect was determined using radiation sensitization enhancement factors at 10% clonogenic survival (SER10%). The cell cycle distribution was investigated using flow cytometric analysis with propidium iodide staining. Incorporation of BrUdR in the DNA was detected by the fluorescence of labelled anti-BrUdR antibodies. The radiation sensitization enhancement exhibits energy dependence with a maximum of 2.3 at 125 kVp for the combined drug treated cells. At this energy, the shape of the clonogenic survival curve of the pharmacological agents treated cells changes substantially. This change is interpreted as an increased lethality of the local radiation environment and is attributed to supplemented inhibition of DNA repair. Radiation induced chemo-beta therapy was demonstrated in vitro by the targeted activation of combined pharmacological agents with optimized energy tuning of x-ray beams on 9 L cells. Our results show that this is a highly effective form of chemo-radiation therapy.
منابع مشابه
The biological effects induced by high-charged and energy particles and its application in cancer therapy
The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...
متن کاملAn Overview of Technological Developments in Medical Applications of X-Rays and Radioactivity
The years 1895 to 1898 were momentous for their impact on health and human well beings. First, Wilhelm Roentgen noted a glowing fluorescent screen, caused by invisible rays. This event subsequently led to the discovery of X-rays in 1895, and thus the birth of the “atomic ageâ€. Next Becquerel’s investigations of these mysterious rays led to his experiments with uranium salt crystals. He th...
متن کاملComparison of Absorbed Fraction of Gamma and Beta Rays of I-124 and I-131radio-Isotopes in Thyroid Gland with Monte Carlo Simulation
I131 is a famous radio-iodine isotope in use for diagnosis and treatment of hyper functioning and cancerous thyroid gland. It is a nuclear reactor product; however nuclear reactor may be unavailable in some areas. Replacement by I-124 may be possible, another iodine isotope producible by cyclotron; a system more available than reactor. Here absorbed fraction of Gamma and Beta rays of...
متن کاملEvaluation of gold nanoparticles radio sensitization effect in radiation therapy of cancer: review article
In recent years, the use of gold nanoparticles (GNPs) in radiation therapy has been studied by experimentation and Monte Carlo simulation repeatedly. Although the idea of increasing doses has been raised by high-atomic elements since decades ago, but due to the adaptation of gold nanoparticles with the biological system, scientists have incited more about the various uses of these materials in ...
متن کاملComparison of Absorbed Fraction of Gamma and Beta Rays of I-124 and I-131radio-Isotopes in Thyroid Gland with Monte Carlo Simulation
I131 is a famous radio-iodine isotope in use for diagnosis and treatment of hyper functioning and cancerous thyroid gland. It is a nuclear reactor product; however nuclear reactor may be unavailable in some areas. Replacement by I-124 may be possible, another iodine isotope producible by cyclotron; a system more available than reactor. Here absorbed fraction of Gamma and Beta rays of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 60 20 شماره
صفحات -
تاریخ انتشار 2015